Acumed® is a global leader of innovative orthopaedic and medical solutions.
We are dedicated to developing products, service methods, and approaches that improve patient care.

Acumed® Forearm Fracture Solutions

Acumed Forearm Fracture Solutions includes plating and rodding systems with a range of diaphyseal radius and ulna fracture treatment options.

The plating system and rodding system may be used in combination for plating the radius and rodding the ulna, or vice versa.

By combining midshaft plates and nails for the radius and ulna, Acumed offers multiple surgical options for fractures, fusions, and osteotomies of the forearm, all in one tray.

Forearm Plate Indications for Use:
Acumed Anatomic Midshaft Forearm Plates are indicated for the treatment of fractures, fusions, and osteotomies of the radius and ulna.

Forearm Rod Indications for Use:
Acumed Forearm Rods are indicated for the treatment of fractures and osteotomies of the radius and ulna.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
</tr>
<tr>
<td>Caution</td>
</tr>
<tr>
<td>Note</td>
</tr>
</tbody>
</table>
Table of Contents

- System Features ... 2
- Instrument Overview .. 7
- Surgical Technique Overview .. 10
- Surgical Techniques .. 12
 - Anatomic Midshaft Forearm Plate Surgical Technique 12
 - Ulna Rod Surgical Technique .. 15
 - Radius Rod Surgical Technique ... 19
- Ordering Information ... 23
System Features

Plates

Acumed Anatomic Midshaft Forearm Plates offer features not found in traditional straight plates. The system of precontoured plates, including Midshaft Ulna Plates, Volar Midshaft Plates, and Dorsolateral Midshaft Radius Plates, may be used to treat fractures, fusions, and osteotomies of the radius and ulna.

When used as templates, precontoured plates are intended to help restore forearm geometry and assist in reestablishing pronation and supination. Precontoured plates and rods are designed to help restore radial bow and may reduce the need for intraoperative bending, thereby reducing the risk of implant weakening that may come with bending of traditional implants.

Note: The plates may be used with either the Acumed cortical (hex) or hexalobe screws.

- **Tapered ends**
 - Are designed to reduce stress on bone and minimize the potential for refracture above or below the plate.

- **Limited contact undersurface**
 - Designed to ease compression of the periosteum to improve blood supply to the healing zone.

- **Approach-specific radius plates**
 - For either a dorsolateral or volar approach.

- **Low-profile design**
 - Screws sit flush with the plate. This design is intended to minimize soft tissue irritation.
System Features [continued]

Dorsolateral Midshaft Radius Plates
- 6-Hole Dorsolateral Midshaft Radius Plate (80 mm) (70-0074)
- 8-Hole Dorsolateral Midshaft Radius Plate (100 mm) (70-0075)
- 10-Hole Dorsolateral Midshaft Radius Plate (130 mm) (70-0076)
- 12-Hole Dorsolateral Midshaft Radius Plate (160 mm) (70-0077)
- 14-Hole Midshaft Dorsolateral Radius Plate (180 mm) (70-0466-S*)
- 16-Hole Midshaft Dorsolateral Radius Plate (210 mm) (70-0467-S*)

Midshaft Ulna Plates
- 6-Hole Midshaft Ulna Plate (80 mm) (70-0070)
- 8-Hole Midshaft Ulna Plate (100 mm) (70-0071)
- 10-Hole Midshaft Ulna Plate (130 mm) (70-0072)
- 12-Hole Midshaft Ulna Plate (160 mm) (70-0073)
- 14-Hole Midshaft Ulna Plate (180 mm) (70-0463-S*)
- 16-Hole Midshaft Ulna Plate (210 mm) (70-0464-S*)

Midshaft Volar Radius Plates
- 6-Hole Midshaft Volar Radius Plate (80 mm) (70-0066)
- 8-Hole Midshaft Volar Radius Plate (100 mm) (70-0067)
- 10-Hole Midshaft Volar Radius Plate (130 mm) (70-0068)
- 12-Hole Midshaft Volar Radius Plate (160 mm) (70-0069)
- 14-Hole Volar Midshaft Radius Plate (180 mm) (70-0469-S*)
- 16-Hole Volar Midshaft Radius Plate (210 mm) (70-0470-S*)

*Optional, sterile-packed only
System Features [continued]

Rods

Acumed Forearm Rods offer an alternative to traditional plating for the treatment of fractures and osteotomies of the radius and ulna. Designed with an anatomic contour intended to ease insertion and closely match the curvature of the ulnar or radial canal, the rods’ targeted interlocking screws and paddle-blade tip are designed to lock and rotationally secure bone segments to stabilize the fracture. This minimally invasive technique may reduce scarring and surgery time over traditional open reduction and internal fixation.

The plating system and rodding system may be used in combination for plating the radius and rodding the ulna, or vice versa. By combining midshaft plates and nails for the radius and ulna, Acumed offers multiple surgical options for fractures, fusions, and osteotomies of the forearm, all in one tray.

Precontoured rods
Rods are designed to help ease insertion and closely match the geometry of the radial or ulnar canal.

Fracture stabilization
A targeted interlocking screw and paddle-blade tip locks and rotationally secures bone fragments to assist in fracture union.
System Features [continued]

Ulna Rods

3.0 mm x 210 mm Ulna Rod
(UL-3021-S)

3.0 mm x 230 mm Ulna Rod
(UL-3023-S)

3.0 mm x 250 mm Ulna Rod
(UL-3025-S)

3.0 mm x 270 mm Ulna Rod
(UL-3027-S)

3.6 mm x 210 mm Ulna Rod
(UL-3621-S)

3.6 mm x 230 mm Ulna Rod
(UL-3623-S)

3.6 mm x 250 mm Ulna Rod
(UL-3625-S)

3.6 mm x 270 mm Ulna Rod
(UL-3627-S)

Radius Rods

3.6 mm x 230 mm Radius Rod, Right
(RR-3623-S)

3.6 mm x 210 mm Radius Rod, Right
(RR-3621-S)

3.6 mm x 190 mm Radius Rod, Right
(RR-3619-S)

3.0 mm x 230 mm Radius Rod, Right
(RR-3023-S)

3.0 mm x 210 mm Radius Rod, Right
(RR-3021-S)

3.0 mm x 190 mm Radius Rod, Right
(RR-3019-S)

3.0 mm x 190 mm Radius Rod, Left
(RL-3019-S)

3.0 mm x 210 mm Radius Rod, Left
(RL-3021-S)

3.0 mm x 230 mm Radius Rod, Left
(RL-3023-S)

3.6 mm x 190 mm Radius Rod, Left
(RL-3619-S)

3.6 mm x 210 mm Radius Rod, Left
(RL-3621-S)

3.6 mm x 230 mm Radius Rod, Left
(RL-3623-S)
System Features [continued]

Instrumentation

Forearm Fracture Solutions includes several instruments designed to streamline the surgical experience.

Customized Plate Clamps
- One end shaped to fit over and grasp the plate
- Opposing end has serrated teeth to grip the bone to maintain plate placement and reduction
- Fit of the clamp is intended to help position the plate on the bone and avoid scratching of the plate that can be caused by a traditional clamp's serrated jaw closing down on the plate

Angled Drill Guide (Optional)
- Allows the surgeon to angle the drill at three predetermined angles: 15, 30, and 45 degrees. Surgeons may lag across the fracture site through the plate or prior to plate application
- Contains K-wire holes for visualization of the screw’s trajectory and placement in the bone

Soft Tissue Spreader
- Attaches to the locking holes in the plate and holds the soft tissue away from the surgical site
- Allows fewer retractors and instruments in the surgical site
- K-wire holes secure spreader to the plate for alignment if the locking bolt is not used
Acumed® Forearm Fracture Solutions Surgical Technique

Instrument Overview

- Plate Clamp (80-0223)
- Reduction Forceps with Serrated Jaws (PL-CL04)
- Hexalobe Locking Drill Guide 6–65 mm (80-0668)
- 2.8 mm/3.5 mm Thin Drill Guide (PL-2196)
- 3.5 mm Narrow Drill Guide Cannula (PL-2095)
- Depth Gauge 6–65 mm (80-0623)
- 2.8 mm x 5" Quick Release Drill (PL-2196)
- 2.8 x 5” Quick Release Drill (MS-DC28)
- 3.0 mm x 5” Quick Release Drill (80-1088)
- 2.3 mm Quick Release Drill (80-0627)
- 2.8 mm Quick Release Drill (80-0387)
- 3.5 mm x 5” Quick Release Drill (MS-DC35)
- 3.5 mm Cortical Screw Bone Tap (MS-LTT35)
Intramedullary Rod
Locking Bolt
(MS-0621)

Rosette Knob
(MS-0100)

Ulna M/L Targeting Guide
(MS-0622)

Intramedullary Rod
Targeting Base
(MS-0620)

Periosteal Elevator
(MS-46212)

Medium Ratcheting
Driver Handle
(80-0663)

.059 x 5" ST Guide Wire
(WS-1505ST)

T15 Stick Fit Hexalobe Driver
(80-0760)

.045" x 6" Guide Wire
(WS-1106ST)

15 mm Hohmann Retractor
(MS-46827)

Large Plate Bender
(PL-2045)

Plate Tack
(PL-PTACK)

Medium Ratcheting
Driver Handle
(80-0663)

Intramedullary Rod
Targeting Base
(MS-0620)

Periosteal Elevator
(MS-46212)

.059 x 5" ST Guide Wire
(WS-1505ST)

.045" x 6" Guide Wire
(WS-1106ST)

Large Plate Bender
(PL-2045)

Plate Tack
(PL-PTACK)

Intramedullary Rod
Targeting Base
(MS-0620)
Instrument Overview [continued]

- Radius M/L Targeting Guide (RA-0622)
- Locking Bolt Finger Wrench (MS-0611)
- 3.5 mm Targeting Probe (HR-3102)
- 3.5 mm Targeting Cannula (HR-3101)
- 6.1 mm x 5” Drill (MS-D761)
- 3.5 mm Drill Guide/Depth Gauge (HR-3104)
- 6.1 mm Cortical Awl Assembly (MS-0204)
- 3.5 mm Drill Guide/Depth Gauge (HR-3104)
- 6.1 mm Cortical Awl Assembly (MS-0204)
- 3.1 mm x 300 mm Intramedullary Rod Reamer (RMT3130)
- 3.7 mm T-Handle Reamer (RMT3730)
- 2.8 mm Tap Drill (HR-D105)
- 2.5 mm Solid Hex Driver Assembly (HD-2500)
- 3.5 mm Short Cortical Screw Tap (MS-T355)
Surgical Technique Overview
Acumed® Forearm Fracture Solutions Surgical Technique

Fracture Site Compression → Locking Screw Insertion → Postoperative Protocol

Canal Preparation and Rod Selection → Implant Insertion → Interlocking Screw Insertion
Anatomic Midshaft Forearm Plate Surgical Technique

1 Exposure and Fracture Reduction

Expose the surgical site according to the surgeon’s preference, using either the anterior approach or the posterolateral approach for the radius, depending on the plate to be used for fixation. Ulnar fixation may be achieved through the standard approach, following the subcutaneous border of the ulna. If both the radius and the ulna are fractured, reduce the bone with the simpler fracture first.1

Note: A lag screw may be placed across the fracture site prior to plate application or through the plate in a later step.

2 Plate Selection and Placement

Use fracture assessment and/or preoperative X-ray templating to determine appropriate plate length.

Place the selected plate onto the bone with the middle of the plate positioned over the fracture site to optimize compression.

Use Plate Tacks (PL-PTACK), Plate Clamps (80-0223), Reduction Forceps with Serrated Jaw (PL-CL04), or .045” x 6” ST K-wires (WS-1106ST) to aid with provisional plate fixation if necessary.

Optional: Thread the Surgical Spreader (Plate Mounted) (80-0251) into one of the locking holes in the plate with the Surgical Spreader Locking Bolt (80-0252) to aid with visibility of the surgical site.

Note: Instrument availability may vary depending on which iteration of tray is supplied.

*Note: 14- and 16-hole plates are sterile-packed. Use a ruler and the plate length table to the left as a reference to determine if longer plates should be used.

Anatomic Midshaft Forearm Plate Surgical Technique
[continued]

3 Nonlocking Screw Insertion

Insert a 3.0 or 3.5 mm Nonlocking Hexalobe Screw (30-0XXX) to ensure compression in the axial plane. It is recommended these screws be implanted bicortically for optimal fixation.

Use a 2.8 mm Quick Release Drill (80-0387) and appropriate drill guide for both neutral and dynamic compression drilling.

Insert screws by alternating from one side of the fracture to the other.

Check forearm rotation regularly throughout the procedure.

Optional: The Angled Drill Guide (80-0204) may be used to angle the drill at 15, 30, or 45 degree angles if desired. K-wire holes are also included in the drill guide for additional visualization of screw trajectory and bone placement.

Note: Cortical (hex) or hexalobe screws can be used in the Anatomic Midshaft Forearm Plate System. If dense bone is encountered, use the 3.5 mm Short Cortical Screw Tap (MS-T35S) prior to implanting screws.

4 Fracture Site Compression

Using the gold end of the 3.5 mm Narrow Drill Guide Cannula (PL-2095), drill in dynamic compression mode to provide compression at the fracture site.

Insert at least three 3.0 or 3.5 mm Nonlocking Hexalobe Screws (30-0XXX) on each side of the fracture.
Anatomic Midshaft Forearm Plate Surgical Technique [continued]

5 **Locking Screw Insertion**

Thread the appropriate locking drill guide into a locking hole in the plate.

Drill with the 2.8 mm Quick Release Drill (80-0387), measure for depth, and insert the appropriate size 3.5 mm locking screw.

Note: 3.5 mm Cortical (Hex) or 3.5 mm Locking Hexalobe Screws (CO-3XXX-S or 30-023X) can be used in the locking holes.

6 **Postoperative Protocol**

Perform a thorough radiographic evaluation, checking reduction, alignment, and screw placement. Close the wound and support the forearm according to bone quality and stability. Postoperative rehabilitation is at the discretion of the surgeon.

Optional: Implant Removal Instructions

To extract a Midshaft Forearm Plate, use the T15 Stick Fit Hexalobe Driver (80-0760) and Medium Ratcheting Driver Handle (80-0663) to remove all the screws in the plate. Referencing the Screw Removal Brochure (SPF10-00) may aid in implant extraction if difficulty is experienced.
Ulna Rod Surgical Technique

1 Preoperative Planning and Evaluation
Evaluate positioning of the fracture(s) using fluoroscopy.
It may be necessary to reference the uninjured ulna to more accurately estimate screw length.

Place the patient in a supine position. A radiolucent arm board should be used. Alternatively a lateral position can be used, bringing the arm over the patient’s torso.

Implant the Ulna Rod (UL-3XXX-S) under fluoroscopy to evaluate the position of the rod and the screw. Radiographs in both the anterior to posterior (A/P) and medial to lateral (M/L) planes are suggested.

2 Assemble Targeting Guide
To assemble the targeting guide, first slide the Intramedullary Rod Locking Bolt (MS-0621) through the Intramedullary Rod Targeting Base (MS-0620), then thread it into the rod.

Align the laser mark on the base plate barrel with the corresponding laser mark on the proximal end of the Ulna Rod. This will ensure proper orientation when implanting the rod.

Tighten the locking bolt with the Locking Bolt Finger Wrench (MS-0611). Slide the Ulna M/L Targeting Guide (MS-0622) onto the base plate pins. Lock it into place with a Rosette Knob (MS-0100).
Surgical Approach and Cortex Perforation

The method for approaching the insertion site is at the surgeon’s discretion and may be altered based on the individual patient's anatomy. The following technique may be used as an approach:

Make a 1–2 cm incision longitudinally along the tip of the olecranon to expose the implant entry site.

Carry dissection down sharply through the subcutaneous tissues and the triceps tendon. Care should be taken to avoid the ulnar nerve that sits medially to the olecranon.

Establish the implant insertion point by using the 6.1 mm Cortical Awl Assembly (MS-0204) to perforate the cortex. The Generic Cannula Assembly (MS-2000) may be used in conjunction with the awl as a tissue protector.

Start the awl in the center of the olecranon process, directly in line with the proximal intramedullary canal of the ulna. Bury the awl to the depth groove on the shaft labeled “ULNA.” Fluoroscopy is helpful when verifying proper alignment within the intramedullary canal.

Canal Preparation and Rod Selection

Ream the diaphyseal canal with the 3.1 mm x 300 mm Intramedullary Rod Reamer (RMT3130) and, if necessary to achieve desired cortical engagement, use the 3.7 mm T-Handle Reamer (RMT3730). Start with the smaller reamer to avoid over-reaming. Rod length can be read directly off of the side of the reamer handle labeled “ULNA” (shown).

Note: Select a rod diameter that will pass down the canal with minimal reaming. Choosing a diameter that is too large may cause the rod to become impacted during insertion and difficult to remove.

The reamer should always be used to ensure that the rod will pass down the canal without becoming impacted upon insertion.
Ulna Rod Surgical Technique [continued]

5 Implant Insertion

Insert the selected Ulna Rod (UL-3XXX-S) down the canal and across the fracture site. The rod should be aligned so that the screw is inserted from either an M/L or A/P direction based on the surgeon’s preference.

Under fluoroscopy, gently glide the rod tip past the fracture site and down to the distal metaphysis.

Note: The rod should pass easily down the canal without impaction. If resistance is met, the rod should be withdrawn and the canal checked again with the appropriate reamer.

Verify with fluoroscopy in two directions that the rod has successfully crossed the fracture or fractures and gained reduction.

Check that the proximal end of the rod has been inserted below the surface of the bone.
Ulna Rod Surgical Technique [continued]

6 Interlocking Screw Insertion

Insert the 3.5 mm Targeting Cannula (HR-3101) and 3.5 mm Targeting Probe (HR-3102) into the selected hole in the targeting guide. Lightly tap the probe against the bone to create a dimple. Insert the 3.5 mm Drill Guide/Depth Gauge (HR-3104) through the cannula. Using the 2.8 mm Tap Drill (HR-D105), drill through both cortices.

Ensure that the drill guide is flush to the bone. Use fluoroscopy to verify drill depth that is read off the 3.5 mm Drill Guide/Depth Gauge. Remove the drill guide and cannula.

Insert the appropriate length 3.5 mm Cortical Screw (CO-3XXX-S) through the cannula with the 2.5 mm Solid Hex Driver Assembly (HD-2500) and verify screw position under fluoroscopy.

Note: The screw should not extend past the far cortex by more than 3 mm.

As the screw is being inserted, a groove on the driver shaft indicates that the screw is fully seated against the bone when it aligns with the back of the cannula.

Be sure that the cannula is fully seated against the bone if this method is used. If dense bone is encountered, use the 3.5 mm Short Cortical Screw Tap (MS-T35S) prior to implanting screws.

Note: If inserting a screw from the posterior to anterior aspect of the ulna, use fluoroscopy to ensure that the screw does not violate the ulnohumeral joint space.

If the posterior to anterior screw position is chosen, only the most distal screw should be used to avoid the articular surface.

Note: The Hexalobe Screw System is not currently designed to be used with the Acumed Forearm Rod System. Surgeons should continue to use the sterile-packed 3.5 mm bicortical screws.

7 Optional: Implant Removal Instructions

If removal of the implant is desired, confirm the location of the implant and screws under fluoroscopy. The soft-tissue dissection should be done at the surgeon’s discretion.

Thread the Intramedullary Locking Bolt (MS-0621) to the rod and use the 2.5 mm Solid Hex Driver Assembly (HD-2500) to remove all the screws from the rod. Once the screws have been removed, a hammer or impactor tool may be used to extract the rod. Referencing the Screw Removal Brochure (SPF10-00) may aid in implant extraction.
Radius Rod Surgical Technique

1 Preoperative Planning and Evaluation
Evaluate positioning of the fracture(s) using fluoroscopy. It may be necessary to reference the uninjured radius to more accurately estimate screw length.

Place the patient in a supine position. A radiolucent arm board should be used. Alternatively a lateral position can be used, bringing the arm over the patient’s torso.

Implant the Radius Rod (RX-3XXX-S) under fluoroscopy to evaluate the position of the rod and the screw. Radiographs in both the anterior to posterior (A/P) and medial to lateral (M/L) planes are suggested.

2 Assemble Targeting Guide
To assemble the targeting guide, first slide the Intramedullary Rod Locking Bolt (MS-0621) through the Intramedullary Rod Targeting Base (MS-0620) then thread it into the rod.

Align the laser mark on the base plate barrel with the corresponding laser mark on the distal end of the Radius Rod (RX-3XXX). This will ensure proper orientation when implanting the rod.

Tighten the Intramedullary Rod Locking Bolt with the Locking Bolt Finger Wrench (MS-0611). Slide the Radius M/L Targeting Guide (RA-0622) onto the base plate pins.

Lock the construct into place with a Rosette Knob (MS-0100).
Radius Rod Surgical Technique [continued]

3 Surgical Approach and Cortex Perforation

The method for approaching the insertion site is at the surgeon's discretion and may be altered based on the individual patient's anatomy. The following technique may be used for the surgical approach.

Make a 2–3 cm incision longitudinally along the distal radius over the fourth extensor compartment to expose the implant entry site. Carry dissection down bluntly through the subcutaneous tissues.

Establish the implant insertion point by using the 6.1 mm Cortical Awl Assembly (MS-0204) and the Generic Cannula Assembly (MS-2000) to perforate the cortex just ulnar to Lister’s tubercle, approximately 5 mm from the articular surface.

Direct the awl down the canal and insert to the first depth groove labeled “RADIUS.” Care should be taken to avoid accidental penetration of the adjacent cortex.

Avoid penetrating the far cortex of the radius when using the awl.

Use the Generic Cannula Assembly in conjunction with the awl as a tissue protector if necessary. Fluoroscopy is helpful when verifying proper alignment of the rod.

4 Canal Preparation and Rod Selection

Ream the diaphyseal canal with the 3.1 mm x 300 mm Intramedullary Rod Reamer (RMT3130) and, if necessary to achieve desired cortical engagement, use the 3.7 mm T-Handle Reamer (RMT3730). Start with the smaller reamer to avoid over-reaming. Rod length can be read directly off of the side of the Reamer Handle labeled “RADIUS.”

Note: The reamer should always be used to ensure that the rod will pass down the canal without becoming impacted upon insertion.
Radius Rod Surgical Technique [continued]

5 Implant Insertion

Insert the Radius Rod (RX-3XXX-S) down the canal and across the fracture site. The rod should be aligned so that the screw is inserted from a dorsal-to-volar direction.

Under fluoroscopy, gently glide the rod tip past the fracture site and up to the proximal metaphysis.

Note: The rod should pass easily down the canal without impaction. If resistance is met, the rod should be withdrawn and the canal checked again with the appropriate reamer.

Verify under fluoroscopy in two directions that the rod has successfully crossed the fracture or fractures and gained reduction. Check that the distal end of the rod has been inserted below the surface of the bone.

Figure 6
6 Interlocking Screw Insertion

Insert the 3.5 mm Targeting Cannula (HR-3101) and 3.5 mm Targeting Probe (HR-3102) into the targeting guide hole.

Lightly tap the probe against the bone to create a dimple. Insert the 3.5 mm Drill Guide/Depth Gauge (HR-3104) through the cannula. Using the 2.8 mm Tap Drill (HR-D105), drill through both cortices. Ensure that the drill guide is flush to the bone. Use fluoroscopy to verify drill depth that is read off the drill guide.

Remove the drill guide and cannula. Insert the appropriate length 3.5 mm Cortical Screw (CO-3XXX-S) through the cannula with the 2.5 mm Solid Hex Driver Assembly (HD-2500).

Note: Verify screw position under fluoroscopy. The screw should not extend past the volar cortex by more than 3 mm.

As the screw is being inserted, a groove on the driver shaft indicates that the screw is fully seated against the bone when it aligns with the back of the cannula.

Be sure that the cannula is fully seated against the bone if this method is used. If dense bone is encountered, use the 3.5 mm Short Cortical Screw Tap (MS-T35S) prior to implanting screws.

Note: The Hexalobe Screw System is not currently designed to be used with the Acumed Forearm Rod System. Surgeons should continue to use the sterile-packed 3.5 mm bicortical screws.

7 Optional: Implant Removal Instructions

If removal of the implant is desired, confirm the location of the implant and screws under fluoroscopy. The soft-tissue dissection should be done at the surgeon's discretion.

Thread the Intramedullary Locking Bolt (MS-0621) to the rod and use the 2.5 mm Solid Hex Driver Assembly (HD-2500) to remove all the screws from the rod. Once the screws have been removed, a hammer or impactor tool may be used to extract the rod. Referencing the Screw Removal Brochure (SPF10-00) may aid in implant extraction.
Ordering Information

<table>
<thead>
<tr>
<th>Sterile Implants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius Rods</td>
<td>Ulna Rods</td>
</tr>
<tr>
<td>3.0 mm x 190 mm Radius Rod, Left</td>
<td>RL-3019-S</td>
</tr>
<tr>
<td>3.0 mm x 210 mm Radius Rod, Left</td>
<td>RL-3021-S</td>
</tr>
<tr>
<td>3.0 mm x 230 mm Radius Rod, Left</td>
<td>RL-3023-S</td>
</tr>
<tr>
<td>3.6 mm x 190 mm Radius Rod, Left</td>
<td>RL-3619-S</td>
</tr>
<tr>
<td>3.6 mm x 210 mm Radius Rod, Left</td>
<td>RL-3621-S</td>
</tr>
<tr>
<td>3.6 mm x 230 mm Radius Rod, Left</td>
<td>RL-3623-S</td>
</tr>
<tr>
<td>3.0 mm x 190 mm Radius Rod, Right</td>
<td>RR-3019-S</td>
</tr>
<tr>
<td>3.0 mm x 210 mm Radius Rod, Right</td>
<td>RR-3021-S</td>
</tr>
<tr>
<td>3.0 mm x 230 mm Radius Rod, Right</td>
<td>RR-3023-S</td>
</tr>
<tr>
<td>3.6 mm x 190 mm Radius Rod, Right</td>
<td>RR-3619-S</td>
</tr>
<tr>
<td>3.6 mm x 210 mm Radius Rod, Right</td>
<td>RR-3621-S</td>
</tr>
<tr>
<td>3.6 mm x 230 mm Radius Rod, Right</td>
<td>RR-3623-S</td>
</tr>
</tbody>
</table>
Ordering Information [continued]

Tray Components

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hexalobe Screw Caddy</td>
<td>80-1917</td>
</tr>
</tbody>
</table>

Dorsolateral Midshaft Radius Plates

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6-Hole Dorsolateral Midshaft Radius Plate (80 mm)</td>
<td>70-0074</td>
</tr>
<tr>
<td>3</td>
<td>8-Hole Dorsolateral Midshaft Radius Plate (100 mm)</td>
<td>70-0075</td>
</tr>
<tr>
<td>4</td>
<td>10-Hole Dorsolateral Midshaft Radius Plate (130 mm)</td>
<td>70-0076</td>
</tr>
<tr>
<td>5</td>
<td>12-Hole Dorsolateral Midshaft Radius Plate (160 mm)</td>
<td>70-0077</td>
</tr>
</tbody>
</table>

Midshaft Ulna Plates

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12-Hole Midshaft Ulna Plate (160 mm)</td>
<td>70-0073</td>
</tr>
<tr>
<td>7</td>
<td>10-Hole Midshaft Ulna Plate (130 mm)</td>
<td>70-0072</td>
</tr>
<tr>
<td>8</td>
<td>8-Hole Midshaft Ulna Plate (100 mm)</td>
<td>70-0071</td>
</tr>
<tr>
<td>9</td>
<td>6-Hole Midshaft Ulna Plate (80 mm)</td>
<td>70-0070</td>
</tr>
</tbody>
</table>

Dorsolateral Midshaft Volar Radius Plates

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6-Hole Midshaft Volar Radius Plate (80 mm)</td>
<td>70-0066</td>
</tr>
<tr>
<td>11</td>
<td>8-Hole Midshaft Volar Radius Plate (100 mm)</td>
<td>70-0067</td>
</tr>
<tr>
<td>12</td>
<td>12-Hole Midshaft Volar Radius Plate (160 mm)</td>
<td>70-0069</td>
</tr>
<tr>
<td>13</td>
<td>10-Hole Midshaft Volar Radius Plate (130 mm)</td>
<td>70-0068</td>
</tr>
</tbody>
</table>

Optional Sterile Implants

Dorsolateral Midshaft Radius Plates

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>14-Hole Midshaft Dorsolateral Radius Plate (180 mm)</td>
<td>70-0466-S</td>
</tr>
<tr>
<td>15</td>
<td>16-Hole Midshaft Dorsolateral Radius Plate (210 mm)</td>
<td>70-0467-S</td>
</tr>
</tbody>
</table>

Midshaft Ulna Plates

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>14-Hole Midshaft Ulna Plate (180 mm)</td>
<td>70-0463-S</td>
</tr>
<tr>
<td>17</td>
<td>16-Hole Midshaft Ulna Plate (210 mm)</td>
<td>70-0464-S</td>
</tr>
</tbody>
</table>

Midshaft Volar Radius Plates

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>14-Hole Volar Midshaft Radius Plate (180 mm)</td>
<td>70-0469-S</td>
</tr>
<tr>
<td>19</td>
<td>16-Hole Volar Midshaft Radius Plate (210 mm)</td>
<td>70-0470-S</td>
</tr>
</tbody>
</table>
Ordering Information [continued]

Tray Components

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midshaft Forearm Instrumentation</td>
<td></td>
</tr>
<tr>
<td>1. 2.3 mm Quick Release Drill</td>
<td>80-0627</td>
</tr>
<tr>
<td>2. 2.8 mm Quick Release Drill</td>
<td>80-0387</td>
</tr>
<tr>
<td>3. Periosteal Elevator</td>
<td>MS-46212</td>
</tr>
<tr>
<td>4. Depth Gauge 6–65 mm</td>
<td>80-0623</td>
</tr>
<tr>
<td>5. Hexalobe Locking Drill Guide 6–65 mm</td>
<td>80-0668</td>
</tr>
<tr>
<td>6. Large Plate Bender</td>
<td>PL-2045</td>
</tr>
<tr>
<td>7. 15 mm Hohmann Retractor</td>
<td>MS-46827</td>
</tr>
<tr>
<td>8. 2.8 mm/3.5 mm Thin Drill Guide</td>
<td>PL-2196</td>
</tr>
<tr>
<td>9. 3.5 mm Narrow Drill Guide Cannula</td>
<td>PL-2095</td>
</tr>
<tr>
<td>10. Medium Ratcheting Driver Handle</td>
<td>80-0663</td>
</tr>
<tr>
<td>11. 3.5 mm Cortical Screw Bone Tap</td>
<td>MS-LTT35</td>
</tr>
<tr>
<td>12. 3.5 mm x 5" Quick Release Drill</td>
<td>MS-DC35</td>
</tr>
<tr>
<td>13. 3.0 mm x 5" Quick Release Drill</td>
<td>80-1088</td>
</tr>
<tr>
<td>14. 2.8 mm x 5" Quick Release Drill</td>
<td>MS-DC28</td>
</tr>
<tr>
<td>15. Plate Tack</td>
<td>PL-PTACK</td>
</tr>
<tr>
<td>16. T15 Stick Fit Hexalobe Driver</td>
<td>80-0760</td>
</tr>
<tr>
<td>17. .045" x 6" ST Guide Wire</td>
<td>WS-1106ST</td>
</tr>
<tr>
<td>18. .059 x 5" ST Guide Wire</td>
<td>WS-1505ST</td>
</tr>
<tr>
<td>19. Plate Clamp</td>
<td>80-0223</td>
</tr>
<tr>
<td>20. Reduction Forceps with Serrated Jaws</td>
<td>PL-CL04</td>
</tr>
</tbody>
</table>

Optional Components

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midshaft Forearm Plate Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Angled Drill Guide Assembly</td>
<td>80-0204</td>
</tr>
<tr>
<td>Surgical Spreader (Plate Mounted)</td>
<td>80-0251</td>
</tr>
<tr>
<td>Surgical Spreader Locking Bolt</td>
<td>80-0252</td>
</tr>
</tbody>
</table>
Ordering Information [continued]

Tray Components

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intramedullary Rod Targeting Base</td>
<td>MS-0620</td>
</tr>
<tr>
<td>2</td>
<td>Intramedullary Rod Locking Bolt</td>
<td>MS-0621</td>
</tr>
<tr>
<td>3</td>
<td>Rosette Knob</td>
<td>MS-0100</td>
</tr>
<tr>
<td>4</td>
<td>Ulna M/L Targeting Guide</td>
<td>MS-0622</td>
</tr>
<tr>
<td>5</td>
<td>Radius M/L Targeting Guide</td>
<td>RA-0622</td>
</tr>
<tr>
<td>6</td>
<td>Locking Bolt Finger Wrench</td>
<td>MS-0611</td>
</tr>
<tr>
<td>7</td>
<td>3.5 mm Drill Guide/Depth Gauge</td>
<td>HR-3104</td>
</tr>
<tr>
<td>8</td>
<td>Generic Cannula Assembly</td>
<td>MS-2000</td>
</tr>
<tr>
<td>9</td>
<td>3.5 mm Targeting Cannula</td>
<td>HR-3101</td>
</tr>
<tr>
<td>10</td>
<td>3.5 mm Targeting Probe</td>
<td>HR-3102</td>
</tr>
<tr>
<td>11</td>
<td>6.1 mm Cortical Awl Assembly</td>
<td>MS-0204</td>
</tr>
<tr>
<td>12</td>
<td>2.5 mm Solid Hex Driver Assembly</td>
<td>HD-2500</td>
</tr>
<tr>
<td>13</td>
<td>3.5 mm Short Cortical Screw Tap</td>
<td>MS-T35S</td>
</tr>
<tr>
<td>14</td>
<td>6.1 mm x 5" Drill</td>
<td>MS-D761</td>
</tr>
<tr>
<td>15</td>
<td>2.8 mm Tap Drill</td>
<td>HR-D105</td>
</tr>
<tr>
<td>16</td>
<td>3.7 mm T-Handle Reamer</td>
<td>RMT3730</td>
</tr>
<tr>
<td>17</td>
<td>3.1 mm x 300 mm Intramedullary Rod Reamer</td>
<td>RMT3130</td>
</tr>
</tbody>
</table>
Ordering Information [continued]

<table>
<thead>
<tr>
<th>Screws</th>
<th>Nonlocking Hexalobe Screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 mm Cortical (Hex) Screws</td>
<td>3.5 mm x 10 mm Nonlocking Hexalobe Screw</td>
</tr>
<tr>
<td>3.5 mm x 12.5 mm Cortical Screw CO-3125-S</td>
<td>30-0256</td>
</tr>
<tr>
<td>3.5 mm x 15.0 mm Cortical Screw CO-3150-S</td>
<td>30-0257</td>
</tr>
<tr>
<td>3.5 mm x 17.5 mm Cortical Screw CO-3175-S</td>
<td>30-0258</td>
</tr>
<tr>
<td>3.5 mm x 20.0 mm Cortical Screw CO-3200-S</td>
<td>30-0259</td>
</tr>
<tr>
<td>3.5 mm x 22.5 mm Cortical Screw CO-3225-S</td>
<td>30-0260</td>
</tr>
<tr>
<td>3.5 mm x 25.0 mm Cortical Screw CO-3250-S</td>
<td>30-0261</td>
</tr>
<tr>
<td>3.5 mm x 27.5 mm Cortical Screw CO-3275-S</td>
<td>30-0262</td>
</tr>
<tr>
<td>3.5 mm x 30.0 mm Cortical Screw CO-3300-S</td>
<td>30-0302</td>
</tr>
<tr>
<td>3.5 mm x 32.5 mm Cortical Screw CO-3325-S</td>
<td>30-0303</td>
</tr>
<tr>
<td>2.3 mm x 26 mm Locking Cortical Screw CO-T2326</td>
<td>30-0305</td>
</tr>
<tr>
<td>2.3 mm x 28 mm Locking Cortical Screw CO-T2328</td>
<td>30-0306</td>
</tr>
<tr>
<td>Locking Hexalobe Screws</td>
<td>3.5 mm x 14 mm Nonlocking Hexalobe Screw</td>
</tr>
<tr>
<td>3.5 mm x 8 mm Locking Hexalobe Screw 30-0232</td>
<td>30-0304</td>
</tr>
<tr>
<td>3.5 mm x 10 mm Locking Hexalobe Screw 30-0233</td>
<td>30-0305</td>
</tr>
<tr>
<td>3.5 mm x 12 mm Locking Hexalobe Screw 30-0234</td>
<td>30-0306</td>
</tr>
<tr>
<td>3.5 mm x 14 mm Locking Hexalobe Screw 30-0235</td>
<td>30-0307</td>
</tr>
<tr>
<td>3.5 mm x 16 mm Locking Hexalobe Screw 30-0236</td>
<td>30-0308</td>
</tr>
<tr>
<td>3.5 mm x 18 mm Locking Hexalobe Screw 30-0237</td>
<td>30-0310</td>
</tr>
<tr>
<td>3.5 mm x 20 mm Locking Hexalobe Screw 30-0238</td>
<td>30-0311</td>
</tr>
<tr>
<td>3.5 mm x 22 mm Locking Hexalobe Screw 30-0239</td>
<td>30-0312</td>
</tr>
</tbody>
</table>

*Part numbers with -S are sterile-packed.
These materials contain information about products that may or may not be available in any particular country or may be available under different trademarks in different countries. The products may be approved or cleared by governmental regulatory organizations for sale or use with different indications or restrictions in different countries. Products may not be approved for use in all countries. Nothing contained on these materials should be construed as a promotion or solicitation for any product or for the use of any product in a particular way which is not authorized under the laws and regulations of the country where the reader is located. Specific questions physicians may have about the availability and use of the products described on these materials should be directed to their particular authorized Acumed distributor. Specific questions patients may have about the use of the products described in these materials or the appropriateness for their own conditions should be directed to their own physician.