Acumed® is a global leader of innovative orthopaedic and medical solutions.

We are dedicated to developing products, service methods, and approaches that improve patient care.

Acumed® Modular Hand System

Designed to address specific indications throughout the hand, from the carpals to the phalanges, the Acumed Modular Hand System offers a variety of fusion solutions in a customizable tray. Plates provide fixation for arthritic conditions such as scapholunate advanced collapse (SLAC), scaphoid nonunion advanced collapse (SNAC), osteoarthritis, and carpal instability.

The **Modular Hand System plate family** includes:

- Hub Cap® Limited Wrist Fusion Plate
- Mini Hub Cap® 4-C Limited Wrist Fusion Plate
- Mini Hub Cap® STT Limited Wrist Fusion Plate
- MCP Fusion Plates

Indications for Use:

The Acumed Limited Wrist Fusion Plate and accessories are designed specifically for fusion of the small bones of the hand including the hamate, capitate, lunate, and triquetrum.
Table of Contents

System Features .. 1
Surgical Technique Overview .. 7
Surgical Technique .. 9
Hub Cap® Limited Wrist Fusion Plate Technique 9
Mini Hub Cap® STT Limited Wrist Fusion Plate Technique 13
MCP Fusion Plate Technique .. 17
Ordering Information ... 21
System Features

Acumed Hub Cap Limited Wrist Fusion Plates are designed to provide fixation for 3- and 4-corner and other limited wrist fusions due to indications conditions such as arthritis, SLAC, SNAC, and chronic instability.

Single Hole
Acts as a dedicated starting point. It targets the hamate and is designed to facilitate placement of the remaining screws

K-wire Hole
Provides provisional stability

Scalloped Holes
Enable placement of either 1 or 2 nonlocking screws into each carpal, per surgeon preference

Center Hole
Allows the Hub Cap Plate Post to be used for provisional stability, leaving space to pack in bone graft when removed. After screw insertion, threading the Hub Cap Screw Cover into the center hole is intended to minimize screw migration and makes the plate a locked construct, at the surgeon's discretion

Hub Cap Screw Cover
Intended to minimize screw migration and makes the plate a locked construct

Mini Hub Cap® 4-C Limited Wrist Fusion Plate
The Mini Hub Cap 4-C Plate offers fusion fixation with up to 7 screws, a dedicated starting hole, and provisional fixation like the Hub Cap Plate, but with a reduced diameter to accommodate smaller patient anatomy.

Mini Hub Cap® STT Limited Wrist Fusion Plate
The Mini Hub Cap STT Limited Wrist Fusion Plate is the only plate in the Hub Cap family that offers 9 different options for up to 6 screws to be placed in 3-corner bone fusions. Hub Cap Plate Post and K-wires may be used with STT plate for provisional fixation.
System Features [continued]

Alternative Plate Placements

CMC Fusion
The Mini Hub Cap STT Plate can also be used for carpometacarpal (CMC) joint fusions.

SLC Fusion
The Mini Hub Cap STT Plate can also be used for scapholunate capitate (SLC) joint fusions.

SC Fusion
Both the Mini Hub Cap 4-C Plate and Mini Hub Cap STT Plate can also be used for scaphocapitate (SC) joint fusions.
Acumed® Modular Hand System Surgical Technique

System Features [continued]

MCP Fusion Plate

The MCP Fusion Plate is designed specifically for fusions of the first metacarpophalangeal (MCP) joint of the thumb. This plate offers left- and right-specific stability for arthritis or chronic instability of the MCP or carpometacarpal (CMC) joint.

A precontoured plate design (25° angle) is intended to help create desired flexion, facilitate screw placement, and reduce the need to bend plates.

Low-profile plate and screw interface is designed to minimize soft tissue irritation

Highly polished and rounded design provides a smooth surface of the titanium plate, designed for tendon movement of the thumb

Variable Screw Placement

Nonlocking screws are available in two different diameters: 2.1 mm and 2.7 mm. Combined with the fusion plate, these screws are designed to achieve 50° and 33° vertical angles for single-hole and scalloped slots respectively or 40° and 50° horizontal angles for single-hole and scalloped slots respectively to draw the carpals together centrally. The scallop design and screw-plate interface is designed to allow for variable angulation of the screws into each carpal bone.
System Features [continued]

Provisional Stability during Insertion
The Hub Cap Limited Wrist Fusion plates feature K-wire holes and utilize the Hub Cap® Plate Post, which are both designed to provide early stability during screw placement. Creating early stability may lessen the chance of potential plate tilt, which could lead to plate prominence above the dorsal surface of the carpals.

Instrumentation
The dual-purpose reamer is designed to capture and contain bone debris as it creates the spherical depression to prepare the fusion site for the Hub Cap® and Mini Hub Cap® plates.

Bone Graft Harvester
A unique bone graft harvester is designed to harvest autograft from the distal radius and iliac crest.

Small Joint Reamers
Small joint reamers for phalangeal fusions are cannulated for K-wire use during fusion procedures and are designed to create congruent joint surfaces for bone union. Reamer sizes include 14 mm and 16 mm concave and convex options.

The same screws and instruments are used with all plates, to streamline the surgical experience. Drills are labeled to match the diameter of the corresponding screw and are housed within the appropriate screw family caddy in the Modular Tray.

Laser lines on the dual-purpose reamer indicate proper reaming depth. The Hub Cap Limited Wrist Fusion plates are designed to sit at or below the surface of the carpals to lessen the chance of soft tissue irritation.

Hub Cap Drill Guide
The Hub Cap Drill Guide allows both 45° fixed and variable angle drilling.
System Features [continued]

Plates are color coded for quick identification:

- Hub Cap Limited Wrist Fusion Plate is light blue
- Mini Hub Cap 4-C Limited Wrist Fusion Plate is fuchsia
- Mini Hub Cap STT Limited Wrist Fusion Plate is gold
- Right MCP Fusion Plate is green
- Left MCP Fusion Plate is blue
System Features [continued]

Instrumentation

- Mini Wrist Fusion Plate Reamer Assy.
 (PL-SR30)
- Spherical Reamer Assy.
 (PL-SR40)
- 30 mm Depth Gauge
 (MS-1030)
- Plate Reamer Head Wrench Assy.
 (PL-SR41)
- 2.1 mm Bone Tap
 (MS-CT21)
- 2.7 mm Bone Tap
 (MS-CT27)
- Plate Bender
 (PL-2040)
- Plate Bending Pliers
 (MS-0500)
- 7 mm Bone Graft Drill Assy.
 (PL-BG07)
- 6 mm Graft Removal Paddle Assy.
 (BG-8064)
- Plate Tack
 (PL-PTACK)
- 2.1 mm / 2.7 mm Drill Guide Assy.
 (PL-2127)
- 1.5 mm x 5” Quick Release Drill
 (MS-DC15)
- 2 mm x 5” Quick Release Drill
 (MS-DC5020)
- Quick Release Handle
 (MS-1210)
- 2.5 mm Quick Release Hex Driver
 (HPC-0025)
- Cruciform Driver Tip
 (MS-2213)
- Cruciform Driver Sleeve
 (MS-47959)
- Cruciform Driver Handle
 (MS-2210)
- .035” x 5.75” ST Guide Wire
 (WS-0906ST)
- .045” x 6” ST Guide Wire
 (WS-1106ST)
- .059” x 5” ST Guide Wire
 (WS-1505ST)
- 10 mm Concave MTP Reamer
 (MTP-F010)
- 10 mm Convex MTP Reamer
 (MTP-M010)
- 12 mm Concave MTP Reamer
 (MTP-F012)
- 12 mm Convex MTP Reamer
 (MTP-M012)
- 14 mm Concave MTP Reamer
 (MTP-F014)
- 14 mm Convex MTP Reamer
 (MTP-M014)
- 16 mm Concave MTP Reamer
 (MTP-F016)
- 16 mm Convex MTP Reamer
 (MTP-M016)
- 16 mm, 20 mm, 24 mm MTP Radius Gage
 (MTP-L250)
- 10 mm, 12 mm, 14 mm MTP Radius Gage
 (MTP-S250)
Surgical Technique Overview

Hub Cap® Technique

STT Fusion Technique

MCP Fusion Plate Technique
Drilling → Screw Insertion → Cover Insertion

Drilling → Cover Insertion

Drilling → Implant Insertion
Hub Cap® Limited Wrist Fusion Plate Technique

Create an Entry Site

Create an entry site central to the dorsal wrist, taking care to avoid the radial and ulnar nerves. Either a dorsal midline longitudinal or T-incision may be used. In cases where scaphoidectomy is called for, care should be taken to protect the extrinsic ligaments while removing the scaphoid. Radial styloidectomy may be required as well.

Fix Carpals with K-Wires

After exposing the capitate, lunate, hamate and triquetrum, denude the cartilage between the four bones involved in the fusion. Provisionally fix the bones with .045” K-wires as volar as possible. Suggested order for K-wires: 1) hamate to capitate, 2) triquetrum to lunate, 3) triquetrum to capitate.

Neutral alignment along the capitolunate axis is crucial for obtaining unimpinged flexion once the wrist has fused. A K-wire joystick may be used to aid in the dorsal rotation of the lunate.
Ream the Carpals and Pack the Fusion Site with Autograft

Center the Reamer (PL-SR40) over the junction of the four carpals, targeting the center with the guide tip of the reamer. If using the Mini Hub® 4-C, use the Mini Hub® 4-C/STT Reamer Assembly (PL-SR30). Under power, ream until the dorsal surface of the carpals lies between the two lines on the reamer head. This, along with placing the plate into the recess to check for prominence, is designed to achieve sufficient plate depth below the dorsal surface of the carpals.

The reamer will capture bone debris as it cuts, keeping the fusion site clear and providing a possible source of bone graft material. The Bone Graft Harvester (PL-BG07) from the system may also be used to harvest autogenous bone from the distal radius or iliac crest. Pack the autograft into the reamed depression targeting the joint surfaces to be fused.

Target the Hamate and Fix the Plate with a K-Wire

Install the Hub Cap Plate Post (PL-WF50) into the center of the Hub Cap with the 2.5 mm Hex Driver (HPC-0025). Place the Hub Cap into the depression and target the hamate with the single screw hole. Ensure that the placement of this first screw adequately facilitates subsequent screw placement in the three other bones. When targeting, keep in mind that a total of seven screws is designed to be used for this procedure: one in the single hole and two for each of the scalloped slots, placed in the outer holes.

Fix the plate provisionally with a .035” K-wire(s) opposite the hamate to ensure its position. The K-wire(s) and plate post provide multiple points of provisional stabilization, which are designed to secure the plate’s position during drilling and screw insertion.
5 Drill the Hamate

Using either end of the Drill Guide (PL-2127), drill into the hamate and measure depth. Holes should be drilled to within 2 mm of the far cortex. Avoid bicortical drilling. The plate is designed to use a total of seven screws for this procedure: one in the single hole and two for each of the scalloped slots, placed in the outer holes.

Screw placement ranges:
- Single hole: 50° vertical and 40° horizontal
- Scalloped slot: 33° vertical and 50° horizontal

Tip: While 2.1 mm screws (CO-F21XX) are available, it is recommended to use the 2.7 mm screws (CO-F27XX) and the accompanying drills and taps within the system. The 2.1 mm screws require a 1.5 mm Drill (MS-DC15) and 2.7 mm screws require a 2 mm Drill (MS-DC5020).

Note: One end of the Hub Cap Drill Guide is at a fixed 45° angle (Figure 10), while the other allows a variable 33–50° angle (Figure 9).

6 Insert Hamate Screw and Target Lunate

Measure drill depth and determine screw length with the Depth Gauge (MS-1030). Insert the first screw with the Cruciform Screw Driver Handle (MS-2210). Use the longest screws possible for maximum fixation stability. After inserting first screw, target lunate for next screw, drill, and insert. With two screws and the plate post as fixation, the .035” K-wire(s) that had been used to provisionally stabilize the plate may be removed.

Tip: In the case that a rescue solution is needed:
1. Redrill at a different angle
2. Place a third screw into the middle scallop
3. Secure the screw with the Screw Cap (PL-WF60)
4. If using a 2.1 mm screw, replace with a 2.7 mm screw
Insert Remaining Screws and Remove Plate Post

Using the same process, drill and insert screws into the remaining holes. Tighten all of the screws to ensure compression of the joint surfaces and promote fusion of the carpals.

Recommended screw insertion order is: 1) hamate, 2) lunate, 3) capitate, 4) triquetrum. Fill the remaining holes in any order.

The plate post may then be removed with the 2.5 mm Hex Driver (HPC-0025), allowing autograft to be packed in the central plate hole.

Assess Final Fixation

View fixation under fluoroscopy to ensure proper placement and test range of motion.

Optional: Secure screws and autograft with the Screw Cover (PL-WF60) by inserting it into the central plate hole.

Postoperative Protocol

Acumed recommends the postoperative protocol below, which may be followed at the surgeon’s discretion.

After closure, place arm in a bulky volar splint that immobilizes the wrist in a neutral position and elbow at 90°, yet enables early movement of the fingers. In approximately one week, remove sutures and replace medium splint with a removable short arm splint to allow an early range of motion and rehabilitation. Splint should be used for three to four weeks. Periodic radiographs should be taken to check fusion of the four carpals. Normal activities may be resumed after fusion is determined by the operating surgeon to be successful.
Mini Hub Cap® STT Limited Wrist Fusion Plate Technique

1 Exposure

A dorsal approach to the scaphotrapezium-trapezoid (STT) joint is utilized. A longitudinal and curvilinear incision is made just radial to Lister’s tubercle and extends distally. The incision can be extended proximally to allow access to the distal radius for supplemental bone graft.

With this approach, it is important to avoid branches of the radial sensory nerve, lateral antebrachial cutaneous nerve, the deep branch of the radial artery, and the extensor pollicis longus tendon.

2 Prepare the Joints for Fusion

The articular cartilage between the STT joints is removed in a V-shaped fashion. This is accomplished by removing more bone/cartilage dorsally while the volar attachment of these joints is left intact.

Supplemental bone graft is then packed and tamped into the interstices of the fusion site. The 7 mm Bone Graft Harvester Drill (PL-BG07) may be used to simultaneously harvest and morselize the bone.
Mini Hub Cap® STT Limited Wrist Fusion Plate Technique [continued]

3. **Fix Carpals with K-Wires**

The position of the fusion is now determined. Usually, any palmar flexion of the scaphoid needs to be corrected.

Preliminary fixation of the carpals is accomplished using .045” or .059” K-wires found in the Modular Hand System. The wrist is then put through a range of motion to see the impact this has on flexion, extension, and radial and ulnar deviation. If significant impairment in the range of motion in any of these directions is noted, readjust the K-wires as needed.

4. **Provisional Plate Placement**

Before reaming can occur, the Mini Hub® STT (PL-WF33) is placed at the fusion site to ensure correct plate placement. Incorrect placement of the plate can impede range of motion and may not allow adequate screw placement. Care must be taken that the ulnar aspect of the plate does not abut the capitate. The placement is adjusted so that maximum coverage of all three bones is assured. The center of the plate is then marked with a small drill or burr to guide the Mini Hub® 4-C/STT Reamer Assembly (PL-SR30).

Prepare the Mini Hub STT for insertion by threading the Hub Cap® Plate Post (PL-WF50) into the center hole with the 2.5 mm Quick Release Hex Driver (HPC-0025).

Note: To get two screws into each of the three bones, the outside holes of the scallops must be used.
5 Prepare the Site for the Mini Hub® STT

The Mini Reamer Assembly (PL-SR30) is used to prepare the fusion site. If the Mini Reamer is not pre-assembled, remove the Standard Reamer Head (PL-SR39) using the blue Triangular Wrench (PL-SR41). Thread the Mini Reamer Head (PL-SR29) onto the reamer shaft until finger tight. Do not tighten with the Reamer Head Wrench.

The reamer drill tip is now placed at the location marked in Step 4. Under power, or by hand, the three carpal bones are reamed until the first laser mark on the reamer is buried in all three bones. This, along with placing the plate into the recess to check for prominence, ensures a sufficient plate depth below the dorsal surface of the carpals.

6 Plate Placement and Screw Insertion

Insert the plate, confirm proper depth, and rotate to target the three carpal bones. If two screws cannot be placed in all three bones, the trapezoid, which is the most stable, may be secured with only one screw.

Drill the first hole in the trapezoid with the 2 mm Drill (MS-DC5020) through the freehand end of the Drill Guide (PL-2127). Measure drill depth with the depth gauge (MS-1030). A 2.7 mm screw (CO-F27XX) is inserted with the Cruciform Screw Driver Handle (MS-2210), but not fully tightened. Place the second screw opposite the first, most often in the radial aspect of the scaphoid and tighten these two screws alternately to seat the plate. The remaining screws are then placed with two screws in the scaphoid, two in the trapezium and at least one in the trapezoid.
Mini Hub Cap® STT Limited Wrist Fusion Plate Technique

[continued]

7 **View, Post Removal, Cover Insertion and Closure**

Once all screws are placed, the construct is viewed from multiple angles under fluoroscopy to ensure that no screws enter into the first CMC joint or interfere with the SC articulation.

The Hub Cap® Plate Post (PL-WF50) is now removed allowing bone graft to be packed in the central hole of the plate. The optional Hub Cap® Screw Cover (PL-WF60) may be threaded into the central hole to hold the screws and bone graft in position. The capsule, retinaculum and skin are closed in the manner preferred by the operating surgeon.

Postoperative Protocol

Acumed recommends the postoperative protocol below, which may be followed at the surgeon’s discretion.

Postoperatively the patient is placed in a thumb spica splint. At approximately two weeks the patient is placed in a thumb spica cast. Radiographic union usually occurs between eight to twelve weeks. Use of an external bone stimulator during this time can be a significant adjunct to union. Should there be any question of whether union has occurred a CT scan can be obtained.

Once the surgeon feels union has been accomplished, the patient can begin mobilization. The use of a removable splint as well as occupational therapy is highly recommended to achieve a functional range of motion and grip strength.
MCP Fusion Plate Technique

1. **Create Entry Site**

 Create an entry site using a dorsal midline approach to the metacarpophalangeal joint. Continue the dissection sharply on the radial and ulnar aspects of the joint, excising the collateral ligaments and creating exposure to the joint.

2. **Decorticate Joint Surfaces**

 Drive a .059” K-wire from the system through each bone to act as a guide for the reamers. While the wire for the proximal phalanx should be driven centrally, the wire for the metacarpal should be driven obliquely at an angle equal to the desired angle of flexion. This should begin centrally and exit through the dorsal midline of the metacarpal. Slowly decorticate the articular surfaces of the joint using the cannulated concave/convex reamers within the system. This creates a “ball and socket” joint. Prior to reaming, the ligaments should be released completely for better access and to lessen the chance of risk to the soft tissues.

 IMPORTANT: Advance the reamers slowly to avoid over reaming.
MCP Fusion Plate Technique [continued]

3 Secure Plate to Proximal Phalanx

If necessary, contour plate to desired angle of flexion. The plate comes precontoured with a 25° angle. Secure the plate to the proximal phalanx using the Plate Tack (PL-PTACK) in the most distal hole and check flexion.

4 Drill the First Hole

Using the freehand end of the Drill Guide (PL-2127), drill the proximal phalangeal hole of the plate. Measure the depth of the hole with the Depth Gauge (MS-1030) and note the appropriate screw size that will sufficiently engage both cortices.

Tip: The 2.1 mm (CO-F21XX) screws require a 1.5 mm Drill (MS-DC15) and the 2.7 mm screws (CO-F27XX) require a 2 mm Drill (MS-DC5020).
5 Insert the First Screw. Repeat Process for Second

Insert the appropriate screw through the plate with the Cruciform Screw Driver Handle (MS-2210) and into the bone. Remove the Plate Tack. Repeat the drill-and-insertion process for the distal hole.

6 Compress The Joint

While maintaining compression across the MCP joint, place the proximal portion of the plate along the radial side of the metacarpal. Drill and measure as before, inserting the proximal screw and then the distal.

Option: If greater compression is desired, a compression screw may be inserted obliquely from the medial side of the metacarpal across the fusion site and into the proximal phalanx.
MCP Fusion Plate Technique [continued]

7 **Pack the Fusion Site with Autograft**

After securing the plate to the metacarpal, insert a small amount of bone graft into the vicinity of the fusion mass. Ensure that the interphalangeal joint of the thumb is unrestricted in its motion and repair the extensor tendons. After closing, a sterile dressing and a protective dorsal splint are applied.

Postoperative Protocol

Acumed recommends the postoperative protocol below, which may be followed at the surgeon's discretion.

In approximately one week the patient is placed in a thumb spica splint and referred to therapy. In therapy, a strong emphasis is placed on an early range of motion for both the interphalangeal and carpometacarpal joints. The thumb spica splint is discontinued in four to six weeks after the patient is relatively comfortable and based on surgeon descretion.
Ordering Information

Tray Components

<table>
<thead>
<tr>
<th>Instruments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Hand Instrument Set (No Implants)</td>
<td>WF-0000</td>
</tr>
<tr>
<td>1 Wrist Fusion Plate Reamer Head</td>
<td>PL-SR39</td>
</tr>
<tr>
<td>2 Spherical Reamer Assembly</td>
<td>PL-SR40</td>
</tr>
<tr>
<td>3 Mini Wrist Fusion Plate Reamer Head</td>
<td>PL-SR29</td>
</tr>
<tr>
<td>4 Mini Wrist Fusion Plate Reamer Assembly</td>
<td>PL-SR30</td>
</tr>
<tr>
<td>5 Plate Reamer Head Wrench Assembly</td>
<td>PL-SR41</td>
</tr>
<tr>
<td>6 Plate Bending Pliers</td>
<td>MS-0500</td>
</tr>
<tr>
<td>7 Plate Bender</td>
<td>PL-2040</td>
</tr>
<tr>
<td>8 30 mm Depth Gauge</td>
<td>MS-1030</td>
</tr>
<tr>
<td>9 2.1 mm / 2.7 mm Drill Guide Assembly</td>
<td>PL-2127</td>
</tr>
<tr>
<td>10 Quick Release Handle</td>
<td>MS-1210</td>
</tr>
<tr>
<td>11 Plate Tack</td>
<td>PL-PTACK</td>
</tr>
<tr>
<td>12 Cruciform Driver Tip</td>
<td>MS-2213</td>
</tr>
<tr>
<td>13 Cruciform Driver Sleeve</td>
<td>MS-47959</td>
</tr>
<tr>
<td>14 Cruciform Driver Handle</td>
<td>MS-2210</td>
</tr>
<tr>
<td>15 2.5 mm Quick Release Hex Driver</td>
<td>HPC-0025</td>
</tr>
<tr>
<td>6.035” x 5.75” ST Guide Wire</td>
<td>WS-0906ST</td>
</tr>
<tr>
<td>6.045” x 6” ST Guide Wire</td>
<td>WS-1106ST</td>
</tr>
<tr>
<td>6.059” x 5” ST Guide Wire</td>
<td>WS-1505ST</td>
</tr>
</tbody>
</table>

Acumed products complementary to the Modular Hand System include:

- Acu-Loc® Volar Distal Radius Plating System
- Acu-Loc® 2 Wrist Plating System
- Acu-Loc® Wrist Spanning Plate
- Acutrak® Headless Compression Screw—Mini and Standard
- Acutrak 2® Headless Compression Screw—Micro, Mini, and Standard
- ARC Wrist Tower System
- Forearm Fracture Solutions
- Hand Fracture System
- SLIC Screw® System
- Small Bone External Fixation System
- Stableloc External Fixation System
- Total Wrist Fusion System
- Osteotomy System

To learn more about the full line of Acumed® innovative surgical solutions, please contact your local Acumed sales representative, call 888.627.9957 or visit www.acumed.net.
Ordering Information

Tray Components

<table>
<thead>
<tr>
<th></th>
<th>Instruments</th>
<th>Screws (Titanium)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7 mm Bone Graft Drill Assembly PL-BG07</td>
<td>21 mm x 6 mm Cruciform Screw CO-F2106</td>
</tr>
<tr>
<td>2</td>
<td>16 mm Convex MTP Reamer MTP-M016</td>
<td>21 mm x 8 mm Cruciform Screw CO-F2108</td>
</tr>
<tr>
<td>3</td>
<td>16 mm Concave MTP Reamer MTP-F016</td>
<td>21 mm x 10 mm Cruciform Screw CO-F2110</td>
</tr>
<tr>
<td>4</td>
<td>14 mm Convex MTP Reamer MTP-M014</td>
<td>21 mm x 12 mm Cruciform Screw CO-F2112</td>
</tr>
<tr>
<td>5</td>
<td>14 mm Concave MTP Reamer MTP-F014</td>
<td>21 mm x 14 mm Cruciform Screw CO-F2114</td>
</tr>
<tr>
<td>6</td>
<td>12 mm Convex MTP Reamer MTP-M012</td>
<td>2.1 mm x 16 mm Cruciform Screw CO-F2116</td>
</tr>
<tr>
<td>7</td>
<td>16 mm Convex MTP Reamer MTP-M016</td>
<td>2.7 mm x 6 mm Cruciform Screw CO-F2706</td>
</tr>
<tr>
<td>8</td>
<td>10 mm Concave MTP Reamer MTP-F014</td>
<td>2.7 mm x 8 mm Cruciform Screw CO-F2708</td>
</tr>
<tr>
<td>9</td>
<td>10 mm Convex MTP Reamer MTP-M010</td>
<td>2.7 mm x 10 mm Cruciform Screw CO-F2710</td>
</tr>
<tr>
<td>10</td>
<td>1.5 mm x 5" Quick Release Drill MS-DC15</td>
<td>2.7 mm x 12 mm Cruciform Screw CO-F2712</td>
</tr>
<tr>
<td>11</td>
<td>2.1 mm Bone Tap MS-CT21</td>
<td>2.7 mm x 14 mm Cruciform Screw CO-F2714</td>
</tr>
<tr>
<td>12</td>
<td>2 mm x 5" Quick Release Drill MS-DC5020</td>
<td>2.7 mm x 16 mm Cruciform Screw CO-F2716</td>
</tr>
<tr>
<td>13</td>
<td>2.7 mm Bone Tap MS-CT27</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>6 mm Graft Removal Paddle Assembly BG-8064</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10 mm, 12 mm, 14 mm MTP Radius Gauge MTP-S250</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16 mm, 20 mm, 24 mm MTP Radius Gauge MTP-L250</td>
<td></td>
</tr>
</tbody>
</table>

Implants (Titanium)

| | Hub Cap® Wrist Fusion Plate, Mini, 4 Corner PL-WF44 |
|---|---|--|
| 17| Hub Cap® Wrist Fusion Plate, Mini, 3 Corner PL-WF33 |
| 18| Hub Cap® Wrist Fusion Plate PL-WF40 |
| 19| Hub Cap® Wrist Fusion Plate, Post PL-WF50 |
| 20| Hub Cap® Wrist Fusion Plate, Screw Cover PL-WF60 |
| 21| First MCP Fusion Plate, Left PL-MCPL |
| 22| First MCP Fusion Plate, Right PL-MCPR |
These materials contain information about products that may or may not be available in any particular country or may be available under different trademarks in different countries. The products may be approved or cleared by governmental regulatory organizations for sale or use with different indications or restrictions in different countries. Products may not be approved for use in all countries. Nothing contained on these materials should be construed as a promotion or solicitation for any product or for the use of any product in a particular way which is not authorized under the laws and regulations of the country where the reader is located. Specific questions physicians may have about the availability and use of the products described on these materials should be directed to their particular local sales representative. Specific questions patients may have about the use of the products described in these materials or the appropriateness for their own conditions should be directed to their own physician.